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LETTER TO THE EDITOR 

Scaling in the collapsed polymer phase: exact results 

Aleksander L Owczarekt 
Department of Mathematics, The University, of Melbourne, Parkville, Victoria 3052, 
Austalia 

Received 18 March 1993 

Abstract. We derive an exact scaling form for the low temperature partition function in a 
model of polymer collapse. This confirms recent series work and so gives the exponents 
0=1/2. y-=114 and ~ - 3 1 4  exactly. The model considered is a variant of the self 
interacting partially directed.self-avoiding walk in two dimensions. 

The asymptotic scaling form; in the length L of the chain. of the partition function, 
QL, for models of polymer collapse (&point) has usually been assumed to take the 
following form [I]: 

QL-qopLLy-' (1) 
where log&?) is proportional to the temperature~(b-') dependent free energy. The 
exponent y takes on a different value at the 0-temperature to that at high tempera- 
tures. Evidence has recently [2] been given that in one model of polymer collapse in 
two dimensions the low temperature scaling form is markedly different. Following 
fluid analogies, a Fisher droplet model type scaling has been suggested [2], which giyes 

~. 

QL - qopoLpF'-"Ly--' (2) 
where U and y-  are expected to be universal exponents. Series work [2,3] on the 
self-interacting partially directed self-avoiding walks (IPDSAW) at low temperatures 
strongly suggests that this scaling form is indeed correct and that the values of U and y- 
are close to 112 and ll4.respectively. In this letter, these exponents are derived exactly 
for a semi-continuous version (ICPDSAW) of this model. We note that all the exponents 
previously derived for the IPDSAW and ICPDSAW have been identical and so we expect 
this property to hold for U and y (in fact, U may well be 1/2 for isotropic interacting 
walks). 

For both the original discrete-[4] and the variant [ 5 ] ,  where the length is a 
continuous variable, a generating function approach has yielded exact expressions for 

G(a, P )  = 1: e-""QL(P) dL (3) 

(the integral becomes a sum in the discrete +se). The generating function converges 
for small e-n and I shall use e-'? to denote the radius of convergence of the~generating 
function. The radius of convergence is pivotal in determining the mathematical 
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properties of the model. Firstly, the function ac(p) is directly related to the thermo- 
dynamic (infinite L)  free energy and secondly, because the partition function is 
determined by an inverse Laplace transform which can be computed by summing over 
the poles of C, the singularity at the radius of convergence determines the large L 
behaviour of the partial function. For temperatures BSBs these generating functions 
can easily be used to extract the scaling form of the partition function. This is because 
the generating function has a simple pole or power law type singularity at its radius of 
convergence; that is, the form (1) is equivalent to the following behaviour in the 
generating function: 

C(a,,!?)-(a-aJ-Y. (4) 

Hence, one needs only to find the asymptotics of G on approaching a, to deduce the 
form (1). However, at low temperatues an infinite accumulation of poles produces an 
essential singularity at the radius of convergence. As a consequence one is effectivly 
forced to invert the Laplace transform explicitly and hence the partition function 
scaling has not previously been derived. In this letter I shall derive the asymptotic 
expression for large L of the partition function for the ICPDSAW by summing over the 
residues at this accumulation. 

The configurations of the IPDSAW are partially directed walks on a square lattice, 
which are self-avoiding walks that are restricted from growing in the negative x- 
direction. An energy is assigned to each (non-consecutive), nearest neighbour pair of 
monomers (steps) to introduce a temperature. However, the generating function [4] 
contains q-hypergeometric series about which little asymptotic analysis is known. A 
slight modification considers partially directed walks where the length of each vertical 
segment is allowed to assume real values. (One still has the discrete character in the 
horizontal direction.) These are, the configurations of the ICPDSAW. An energy 
CT(rl, . .,. , rN) is assigned to each-configuration of length L and number of vertical 
segments N ,  where each vertical segment. i=l ,  . . ~ , N ,  has length r; measured in the 
positive y direction giving L=ZEllril.  This energy is 

N- L 

W1,. . . , r N ) = - J ~ m i ~ ( ~ r ; ~ , l r j + l l ) ~ ( - r i ~ i + ~ )  (5 )  
;=1 

where X ( r )  is the Heaviside step function. The energy is then proportional to the 
overlap of successive segments (as in the discrete case). We are interested in attractive 
interactions and so set J=,l  for convenience. The thermodynamics can be deduced 
from the canonical padtion function 

OD 
OI 

&(@)=E dr,. . . d r N 6 ( ~ ~ 1 1 r j ~ - L ) e - ~ u ( ‘ ~ ~ . . . . ’ ~ )  (6) 
N-1 -- - m  

where the Dirac delta function restricts the ‘counting’ to fixed length (equal to L) 
walks. By interchanging the summation and integration the generating function 
G(a,p) defined via (3) can be rewritten as 
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It has been shown (a detailed account can be found in 151) that one can calculate the 
generationg function by considering a slightly more general function %(z, x; a,p). 
given as 

01 

where 

%&; a,B) = dtexp( - alfl +p min( Itl, jzl)%( - tz)) %&; a&) (9) 1:- 
and 

%&; a, p )  = 1. (10) 

One can view %(z, x ;  a,  p )  as being the generating function for continuous walks 
where the first vertical segment is of length z and a fugacity x has been assigned to 
horizontal steps. It is important to see that the generating functionk related to % by 

~ ( a ,  p) = q o ,  1; a, p ) .  (11) 
Now, an integral equation which 9 satisfies is found by substituting the recursive 
formula for !XN into the equation for %. The integral equation can be reduced (with 
loss of boundary condition) to a differential equation. The solution to the differential 
equation is then substituted back into the integral equation to lix the constants of the 
differential equation’s general solution. The method is closely related to the solution 
of the discrete case. The differential equation so produced can be converted to an 
inhomogeneous form of Bessel’s differential equation. The solution and hence the 
generating function is given in terms of Bessel functions. 

In the continuous model then the generating function is given [5] as a ratio of 
Bessel functions: 

where 

and 

P 
a-P’ 

y=- 

(The coupling constant for nearest neighbour interactions has been set to 1 for 
convenience). The critical value of p is &=4 and for low temperatures, p>ps,  the 
radius of convergence is simply given by a.=P. A plot of a,@) is given in figure 1. 
These results can be understood by realising that the poles of G occur,at the zeros of 
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a 

P 

Figure 1. This graph illustrates (schematically) the function a.(@) (which is essentially 
related to the radius of convergence of the generating function). The dashed line is a=@;  
for @>4 this line coincides with a@). The generating function converges everywhere 
above the curve a.(@) and ~ ( 0 )  =0.8526. 

the denominator of (12) and knowing the asymptotics of Bessel functions of large 
order and argument [6]. There exist solutions of 

J:(ev)=O 

for positive v~provided e>1. The radius of convergence a,>P, and there exists an 
isolated pole at a,. As E approaches 1 then a,+p and at E =  1 the asymptotics of the 
generating function can be deduced from standard results [6] with y=1/3. For &<l 
(15) has only solutions for negative v and always for arbitrarily large ] V I .  This leads 
naturally to introduce the parameter rl= a - p  = p / v .  Figure 2 illustrates the pole 
structure of the generating function in the complex I ]  plane-all the poles lie on the 
real axis. Interest then lies in finding 

forP>4 (we can take anyc>O). Despite the large amount that has been written about 
ratios of Bessel functions, the required information is apparently not in the literature 
[7] (so that an inverse transform valid for all L has not been found). However, in 
recent work [8.9] on the bubble model of correlations similar (though not identical) 
expressions arise, and similar information is required. Asymptotics for large L can he 
found [9] by using a transformation from Y to --Y. 
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Re 
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Figure 2. The two schematic diagrams show the positions of the poles of  the generating 
function in the complex q plane for high temperatures (a) and low temperatures (b). The 
crosses mark these positions; near the origin there is, in fact, an accumulation of poles in 
both diagrams. The necessaty contour for the inversion,of the Laplace transform is also 
shown, where c (the real part of the contour) is chosen so that c>&. 

Let the zeros of (15) be labelled as qj<O so that qj+,>vj  (that is I V , + ~ I > I Y ~ ~ )  
beginning at j =  1. There exists an infinite number of q, such that 1imj-- vi= 0. This can 
bededuced from the results of [lo]. So by Cauchy's theorem we have 

i 

where RI are the residues of G(B + q ,  p) at 7,. Our problem is two fold: first to find the, 
residues R, and the values qj at which poles occur, and then to compute the above sum 
for large L. 

Now the residues fo C at vj can be found in the following way: We use the 
transformation 

. J ~ u ( z ) = J ~ ( z ) c o s ( z u ) -  Yu(z)sin(m) 
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and the recurrence relations [lo, 61 amongst J., J.,I and J :  (and similarly for Y.). One 
can then deduce that the solutions of (15) occur at 

where Y =  -U. Given that 

and 

with 

g= (1 - ~ ' ) " ~ 7 0  

and 

f=log - -g>o 
(1 :") 

it is clear that for large U 

ui=j. (24) 
Again using the transformation from positive to negative order in the generating 
function and recalling how q is related to U, the residues at q, = - P h i  are found to be 

. P e-'fq 

zg U; ' 
Ri=Residue of C at qi-- - 

The Wronskian identity 

2 
Ju+~(z)Ydz) - J u ( z ) Y u + ~ ( z )  =JCZ 

is useful here. Substituting (24) into (25) gives us 

Now the sum, 

can be shown to behave as 

m fc the rtitic fi 
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using a steepest descent method. Substituting the relevant expressions for a and b into 
this formula gives us the partition function scaling form, and therefore we have 

QL(B) -Ale@e-k-”zL-3/4 (30) 
with 

and 

A m  = (Wf)”’ (32) 
where f(b) and g(B) are given via (23), (22) and (13). We can then compare this 
directly with the conjectured form (2) to give our major results that a=1/2 and 
y- = 114. 

The exponent x, defined by 

11 -,G) I -constlB -BAx (33) 
as B+BB, can be simply extracted from the coefficient A,. By simple expansions 
x = 3 / 4 ,  which conlirms both the series analysis of [2] and the scaling theory of [Ill. 

In conclusion, the form of the length scaling for the partition function of the 
(continuous) interacting partially directed SAW model at low temperatures has been 
extracted from the generating function by explicitly inverting the Laplace transform 
involved. The essential singularity in the generating function at low temperatures 
destroys the scaling form (1) and indeed gives the form (2). The exponents are found 
to have the values previously inferred from series analysis. 

The author thanks R Brak, E R Love, T Prellberg and P Upton for enlightening 
discussions and A J Guttmann for critically reading the manuscript. The author is 
grateful to the Australian Research Council for financial support through their 
Fellowship scheme. 
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